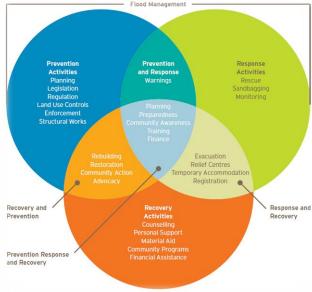


Understanding and Quantifying Flood Risk in Australia

Dr Roozbeh Hasanzadeh | Flooding Engineer: Flood Hydrology, Hydraulics, and Risk Mardi Medwell-Squier | Senior Engineer: Flood Hydrology and Hydraulics

Introduction: Importance of Flood



[1] Emergency Events Database (EM-DAT) Website
 [2] Bureau of Transport Economics
 [3] United Nation Office for Disaster Risk Reduction

Figure 3: Number of Natural Disasters Around the World (1980-2011) [3]

Introduction: Flood risk management

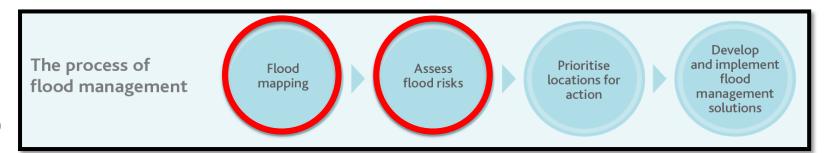
1971	"Preparedness Programme in Bangladesh"- Based on lessons learnt from 1970 Pakistan cyclone that includes: early warning system,	
1990	shelter, evacuation, volunteers, etc. International Decade of Natural Disaster Reduction (IDNDR)	
2000	International Strategy for Disaster Reduction (ISDR)	P
2015	Sendai framework for Disaster Risk Reduction (DRR)	ar

Figure 4: Flood Risk Management Activities

A new global movement from "Disaster Management" to "Disaster Reduction".

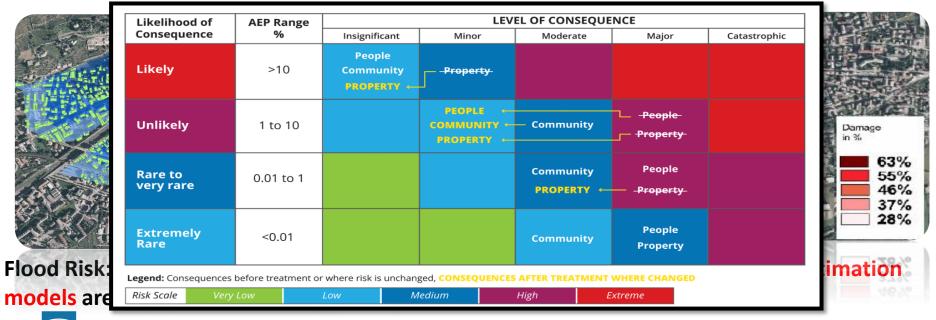
Introduction: Prevention or Cure?

"Better to build a fence at the top of a cliff, than park an ambulance at the bottom"

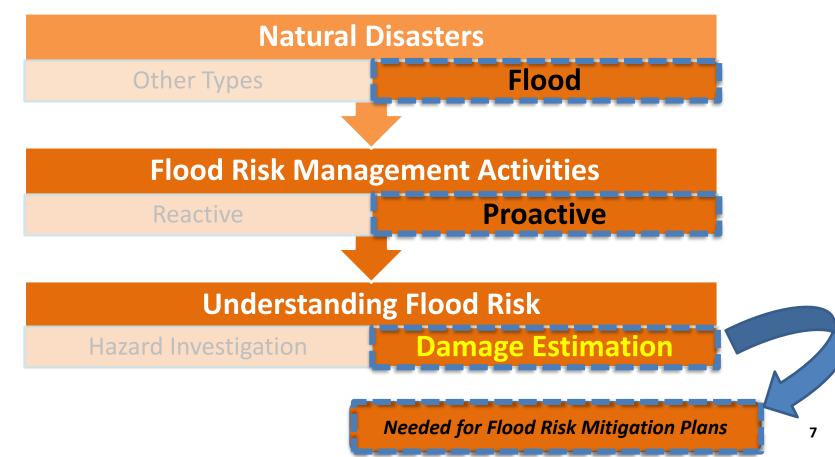

Helen Clark, 2015 Sendai

UNFENCED CLIFFEDGE

4


Understanding Flood Risk

- Understanding Flood Risk is the First Priority of Risk Management Frameworks, because it is essential for:
- Prioritisation of locations
- Cost benefit analysis and calculating AAD
- Checking the **feasibility** of risk mitigation options
- Selecting best practices in risk reduction


Flood Risk Assessment is NOT Flood Mapping

"Risk is the probability and the magnitude of expected Damages." Risk= Probability (Hazard) X Damages

[1] Kreibich and Thieken, 2008; Merz et al., 2004; Meyer et al., 2013

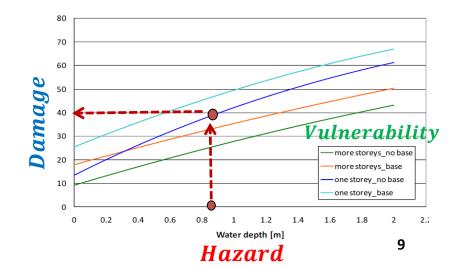
Research Direction

Different Types of Damages

DIRECT

Common Damage Estimation Methods

Averaging Methods:


Considers some mean values of damage for all flooded buildings, including those inundated above and below floor level.

Stage-damage Functions:

They make a causal relationship among the magnitude of the hazard, resistance of flooded objects, and extent of losses for each stage of water. They are categorised into **absolute & relative**

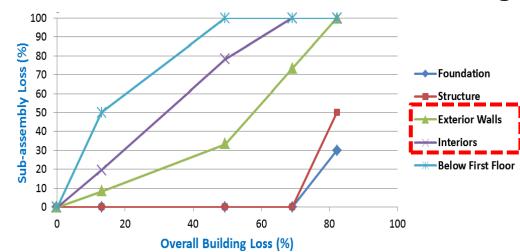
types.

Value of contents	Mean potential damages per m ²		
	(includes external, internal contents and structural damages)		
Low (e.g. offices, sporting pavilions, churches)	\$45		
Medium (e.g. libraries, clothing businesses, caravan parks)	\$80		
High (e.g. electronic, printing)	\$200		

Limitations

- Most damage models are synthetic, they are NOT calibrated with empirical data, and few studies have been conducted on the validation of results;
- Most approaches are absolute which is more rigid and does not easily transfer across time and space;
- All approaches are the traditional type which relies only on a deterministic relationship between type or use of properties at risk and depth of water: the interaction of the most damage-influencing
 parameters and the uncertainty of data is neglected.

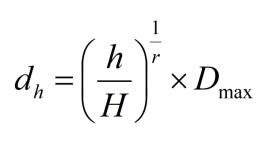
General idea: Sub-assembly approach


- Foundation and below first floor
- Structure framing
- Roof covering and roof framing
- Exterior walls: includes wall coverings, windows, exterior doors and insulation; and
- Interiors: includes interior walls and floor framing, drywall, paint, interior trims, floor coverings, cabinets, and mechanical and electrical facilities.

V: The vulnerabilities of structural components are different. Damage of each category begins at different water depths (after a specific level of total damage).

E: The exposed value of each category relative to the total value of the structure is different.

General idea: Sub-assembly approach



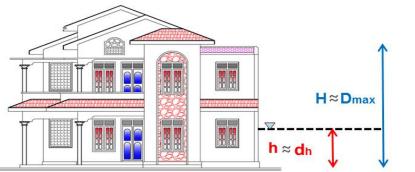

Assembly Components	Relative Value
Foundation and below first floor	12%
Structure framing	9%
Roof covering and roof framing	7%
Exterior walls	22%
Interiors	50%
Total	100%

Figure 5. Illustration of sub-assembly loss vs overall building loss for one-storey buildings with timber walls.

Figure 6. Sub-Assembly replacement values for the common types of residential buildings.

12

HD

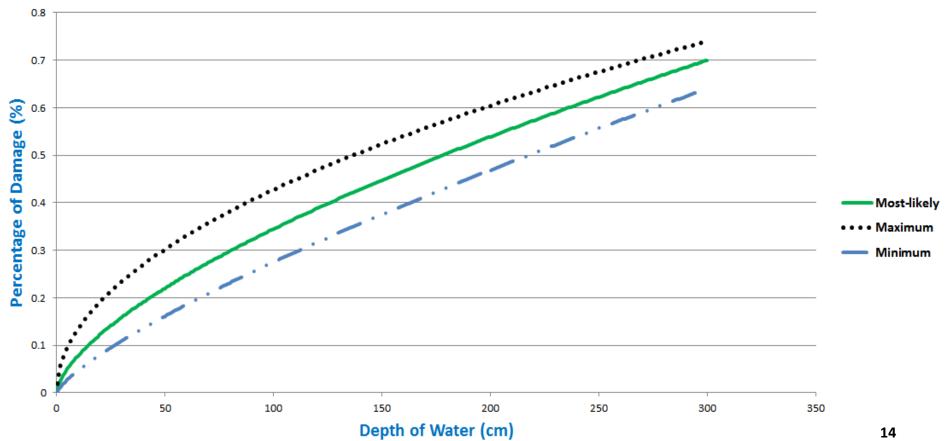
FLFA: Model Development

A. Defining the most common building types and the representative building category for the selected area of study in Australia [1] "4" classes for residential buildings and "1" generic class for commercial buildings.

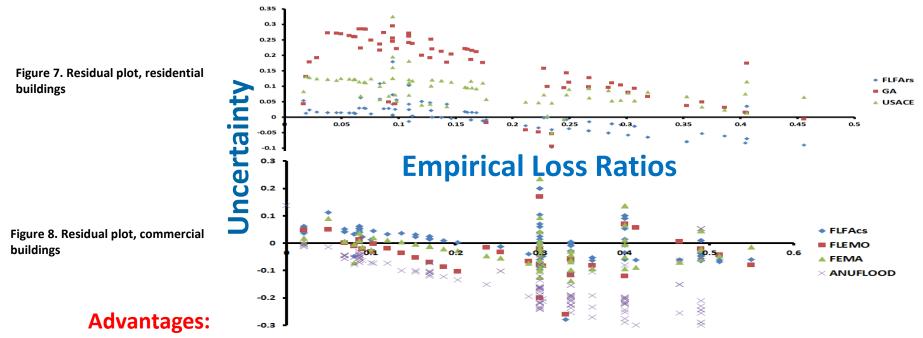
B. Model Calibration (2013 Bundaberg flood event):

For the newly derived model in this work, the extent of damage (dh) in each level of water (h) is a function of two parameters:

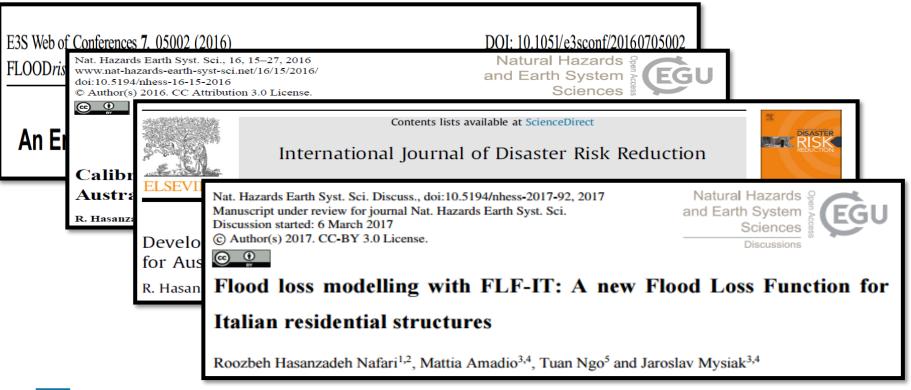
- Maximum percentage of damage "Dmax "; and
- Rate control of function "r "


 $d_h = \left(\frac{h}{H}\right)^{\frac{1}{r}} \times D_{\max}$

These two parameters, with reference to the empirical data,


should be stabilised to the most appropriate values.

FLFA: Model Calibration



FLFA: Results Comparison

- More accurate compared to the existing methods
- Calibration and validation with empirical data
- A better level of transferability in time and space
- Consideration of the epistemic uncertainty of data.

FLFA: Publications

SEVERE FLOOD WARNING

Flood damage is a complicated process, and it might be dependent on a variety of factors which are not taken into account

We have explored the interaction, importance, and influence of *water depth, flow velocity*, water contamination, precautionary measures, emergency measures, flood experience, floor area, building value, building guality, and socioeconomic status

A. Data mining for more than 1000 real-world samples (which includes information on structural damages, impact parameters, and resistance variables)

	Categories		Predictors	Туре	Range
	Flood impact	WD	Water depth	С	between 0 cm and 700 cm above ground
		Vel.	Flow velocity	Ο	1 = calm to 3 = high
Figure 9.		Con.	Water Contamination	0	0 = no contamination to 2 = heavy contamination
Description of the 13 candidate	Emergency	EM	Emergency Measures	0	0 = no measure undertaken to 3 = many measures undertaken
predictors.	Precaution, experience	PM	Precaution Measures	0	1 = no measure undertaken to 4 = many measures undertaken
		Exp.	Flood experience	0	1 = few flood experience to 3 = recent flood experience
	Building characteristic	BQ	Building quality	Ο	1 = very bad to 6 = very good
		BV	Building value	С	1756 to 3594000 AUD
		FS	Floor space per person	С	13 to 870 m ²
	Socioeconomic status	SA	Special attention resident	Ν	0 = No, 1 = Yes
		Own.	Ownership status	Ν	0 = rent, 1 = own
		Inc.	Monthly income	0	1 = \$1-\$599, 2 = \$600-\$1999, 3 = greater than \$2000
GHD		LE	Low education residents	Ν	0 = No, 1 = Yes

B. Model Development: Using regression tree & bagging decision tree (including

200 trees) techniques with the Weka machine-learning software algorithms.

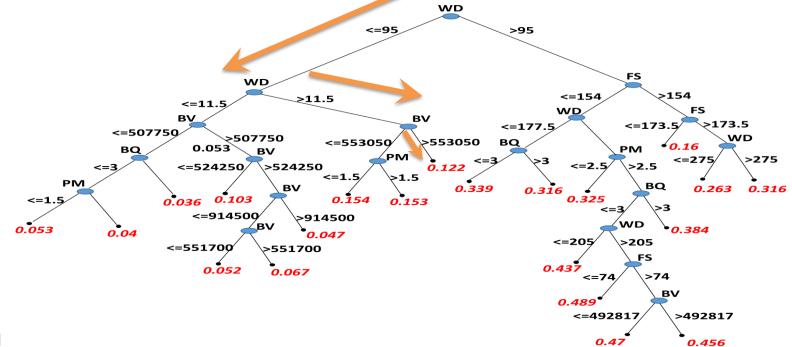


Figure 10. Regression tree with 21 leaves for estimating the structural loss ratios. (WD: water depth, FS: floor space, PM: precaution 19 measures, BV: building value, BQ: building quality)

D. Model Interpretation:

	wat	MDPI	
	Article	Geomatics, Natural Hazards and Risk	Taylor & Francis Taylor is Francis Crosp
ł	Geomatics, Natural Hazards & Risk	Predictive applications of Australian flood loss models after a temporal and spatial transfer	
	Hazards & Risk	ISSN: 1947-5705 (Print) 1947-5713 (Online) Journal homepage: https://www.tandfonline.com/loi/tgnh20	

• Future Development: Developing for other types of buildings and non-typical structures (e.g. roads and bridges).

Α

Results lead to improvement in understanding flood risk: Needed for Flood Risk Mitigation Plans

- Calibration with empirical data,
- A better level of transferability in time and space,
- Consideration of the epistemic uncertainty of data.

Tree-based models were developed for exploring the interaction, importance, and influence of different damage-influencing parameters on the extent of losses.

Acknowledgements

US Army Corps of Engineers

www.ghd.com