Flood Storages and Peak Flows in Moonee Ponds Creek: is more storage always better?

Paul Clemson and Vanessa Wong Engeny Water Management

The Moonee Ponds Creek Catchment

Catchment Overview

A Timeline of Moonee Ponds Creek

Source: Chain of Ponds – Moonee Ponds Creek Plan (Moonee Valley City Council and Moreland City Council, 2018)

What does Moonee Ponds Creek Look Like Now?

Current Flood Management Issues

- Highly impervious catchment
- Hydraulically efficient drainage system
- Lack of flood storage
- Sensitivity of downstream areas to flooding

Project Overview and Objectives

- Identify the potential for large scale flood storages in the catchment
- Investigate whether providing flood storage in the catchment can reduce flows downstream
- Determine what should be considered in the planning of flood storages

Methodology

Stage 1: Identification of Potential Flood Storage Sites

Stage 2: Hydrologic Modelling (RORB)

Methodology: Stage 1a

- Preliminary identification of sites
 - Review of drainage strategies
 - Council GIS: parks, open space and council-owned land
 - Aerial imagery
- Total of up to 76 sites covering 407 hectares

Methodology: Stage 1b and 1c

- Stakeholder engagement
 - Known constraints
 - Known opportunities
 - Advice
- Shortlisted sites
 - Council feedback
 - Distribution of sites
- 14 sites shortlisted

Methodology: Stage 2a

Methodology: Stage 2b

Methodology: 2c

Scenario	Description		
Existing Conditions	Baseline model with revised subareas – peak flows verified at Mt Alexander Road		
Scenario 1	14 storages		
Scenario 2	12 storages plus 2 large downstream storages		
Scenario 3	9 storages (excludes storages immediately downstream of Jacana Retarding Basin and storages with little proven benefit)		
Scenario 4	2 large downstream storages only		
Scenario 5	10 storages plus 2 large downstream storages (excludes storages immediately downstream of Jacana Retarding Basin)		

Key Project Outcomes

Scenario	Number of Storages	Approximate Storage Volume	Downstream Benefit (peak flow reduction at Mt Alexander Road)
Existing Conditions	0		
Scenario 1	14	309,000 m ³	16 % peak flow reduction
Scenario 2	14	389,000 m ³	20 % peak flow reduction
Scenario 3	9	206,000 m ³	13 % peak flow reduction
Scenario 4	2	160,640 m ³	19 % peak flow reduction
Scenario 5	12	302,000 m ³	18 % peak flow reduction

Key Project Outcomes

 Depending on your objective, adding flood storage is not necessarily good

Key Project Conclusions

- Reducing flows to provide effective downstream flood mitigation is difficult
- Offline vs online storages
- Reducing the peak flow is not necessarily good if flows remain high for longer
- Local catchment studies vs overall catchment studies
- Flood storage strategy integration with other catchment stormwater strategies

Thank You

- City of Melbourne
- Melbourne Water

- Moonee Valley City Council
- Moreland City Council

