WATERWAYS ARE BEING MONITORED.

CONOT POLLUTE OUR ENVIRONMENT. CONTROLUTE OUR ENVIRONMENT.

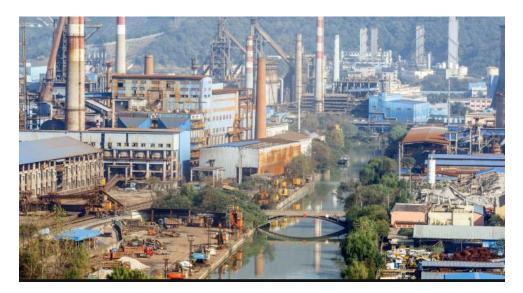
nment tion 1200 EDA \//C (1200 279 249)

Contaminated Industrial Stormwater Networks - Live Monitoring and Pollution Detection

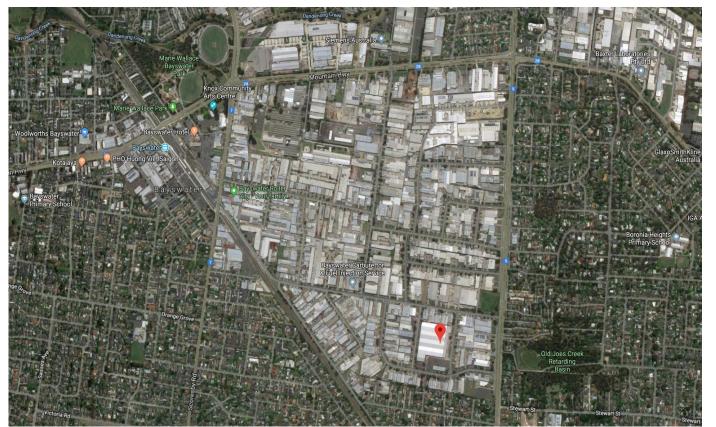
Stormwater Victoria Conference

June 2019 – Heath Baker, Melbourne Water

Background – A legacy of pollution

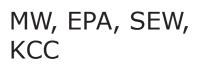


May 2018


https://twitter.com/ 7newsmelbourne/st atus/998320868781 539328

Industrial area challenges

- Business turnover
- Business Type
- Legacy contamination
- 'not my backyard' culture
- After hours
- Education / Knowledge
- Old buildings and infrastructure
- Heavy vehicle movements



Focus area

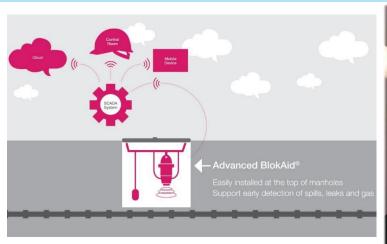
- Old Joes Ck
- Dandenong Creek Catchment
- ~9km from source
- 30km east of Melbourne CBD
- Metals, pesticides, hydrocarbons, surfactants

Multi agency blitz

'Follow the flow' & Research data

Multi agency blitz

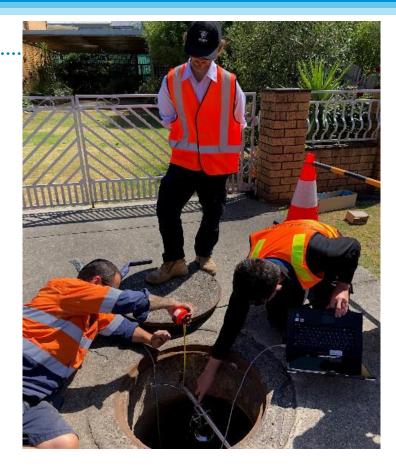
Live flow and quality monitoring – Trunk and drainage monitoring



Ultrasonic -Large dia. network

Arduino -Small dia. network

Ultrasonic (BlokAid) - Incorporating sewer monitoring and alarm technology (Trunk)

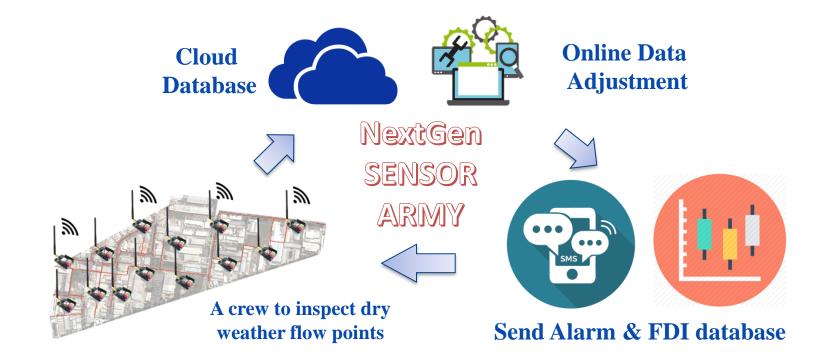


 Monitor stormwater drain level, calculated flow and H2S/VOC gas in real time

Ultrasonic benefits & installation

- Tested
- Lower cost
- Cloud based 3rd party access
- Surface installation
- Less confined space issues
- Easily removable and relocatable

BlokAids in the network



- Trend flow patterns
- Overlay BoM rainfall data
- Seasonal trends
- Blockage alerts
- Early EPA notifications

Incoming data

The Arduino 'Army' – Low cost, high spatial resolution (small dia. Network)

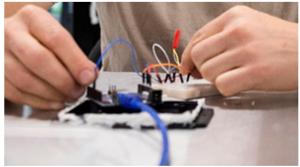
Arduino-based sensors - Background

Background

- Low cost sensors Cost approx. \$100/unit
 - Many units with reasonable accuracy vs. one or two units of high accuracy.

Aims and objectives

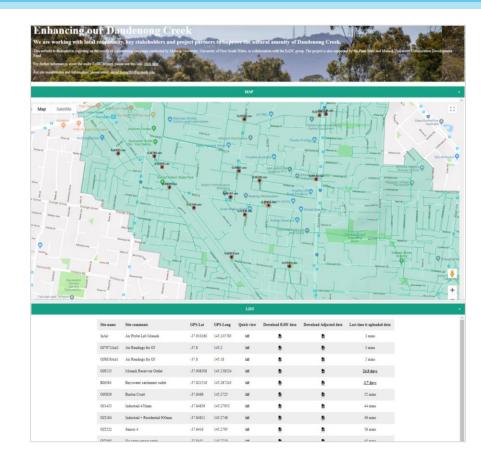
- Locate 'hot spots' with Ultrasonic (BlokAid) units
- Develop, test and deploy an 'army' of Arduino-based low cost water quality sensors to help track and mitigate sources of pollution


Development of Arduino sensors

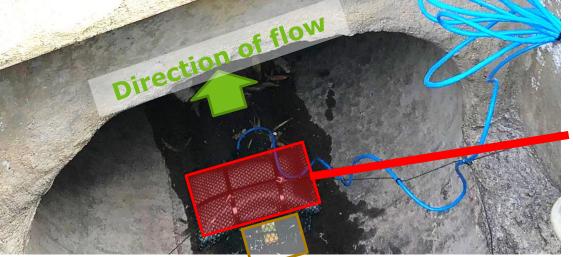
- Our objective develop sensors with the following properties:
 - water quality parameters (to begin with EC and temperature)
 - water flow estimates (to begin with, just depth of water)
 - cheap and ALL open source
 - send data to cloud continuously
 - Alarm capability
 - easy to install without confined space entry
 - long battery life

Making the sensors

- Each unit (currently) contains the following main parts:
 - Arduino Mother board
 - SIM Card
 - Battery 7.2v 10Ah
 - EC probe
 - Depth sensor with built in temperature
 - 10 sec. data read intervals
 - Battery lasts around 2-4 weeks



Website platform

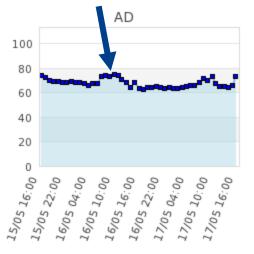

Website designed and operational

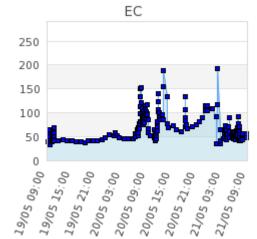
- Automatically corrects air pressure changes using air sensors around Melbourne
- Alarms SMS or emailing if depth, EC or temperature goes above setpoint
- Backed-up twice daily
- Flexible

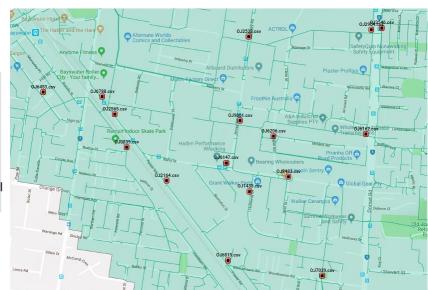
Underground Arduinos

- Deployment
 - 20 sensors have been deployed in this project

Wire cables and sand-bag


Depth, Temp, EC sensor


An army of Arduino-based sensors for pollution detection


- Deployment
 - Bayswater area 3 months

Consistently see peak in depth between 9-3pm each day

- Industrial discharge?
- Cooling waters?

Comparison of monitoring techneques

	Field (Research/Blitz)	Ultrasonic (BlokAid)	Low Cost Hi Res (Arduino)
Water Quality	Y (detailed)	Ν	Y
Alarm Trending	Ν	Y	Maybe
Detailed analysis (quality)	Y	Ν	Y
Gas detection	Ν	Y	Maybe
Flow trend analysis	Ν	Y	Υ

Where to next?

- 12 months (End April 2020) complete trial in OJC
- Review data, trends, device issues
- Relocate, create new focus areas
- Seek new areas council asset focus, whole community benefit
- Automatic alert system (EPA/MW/DELWP?) –
- Response protocols

Thank you

Acknowledgements:

- Sarah Watkins (MW)
- Caroline Carvalho (KCC)
- Giuliano Marcon (KCC)
- Matthew Teston (SEW)
- Dale Irwin (EPA)
- Jason Morris (Iota)
- David McCarthy (Monash Uni)
- Biaqian (Luke) Shi (Monash Uni)