

Stormwater Victoria Conference

June 2019

Celine Marchenay Senior Engineer (Water Technology) celine.marchenay@watertech.com.au Development of a city-wide Drainage Model to assess System Performance

Background

- Different view to traditional approach of drainage management
- Melbourne Water identified a need for a system-wide drainage network for integrated water planning of Melbourne
- Create a "living breathing" hydraulic model to be updated and improved over time

Objectives

- Make use of what we already have
- Build a functional drainage network model to assess capacity of the system
- Assess the drainage capacity (20% AEP and higher) over a range of scenarios including increase population and climate change

REC-RAS	- River Analysis System			
<u>Elle Edit B</u>	un ⊻lew <u>O</u> ptions <u>H</u> elp			
ø914		❣⊾倥◧▥▫▫▫▫	Hydrologic Engineering Center US Army Corpo of Engineers	<u>In I</u>
Project	uniteady flow	d VHEC-RAS (shayen1.pt)		
Plan	Plan 03	d WEC-RAS \shayen1.p03		
Geometry:	geometry1	d: WEC-RAS \shayen1.g01		
Steady Flow				
Unsteady Flow	(unsteady)	d WEC-RAS\shayen1.u01		
Project Description :	insteady flow		SI Units	

Study Area and Approach

Flagging - to record sources of information

• Use of colour flags to record the origin of the data and associated level of accuracy

• Any attributes can be flagged independently

cerv (riom ceri	Grid	[Conduit] - CG1	1D Base												2
CSIM (Catchment	chment														
DU (Dummy data		Length (m)	Shape ID	Width (mm)	Height (mm)	Roughness type	Bottom roughness	Top roughness Manning's n	US invert level (mAD)	US headloss type	US headloss coefficient	DS invert level (m AD)	DS headloss type	DS headloss coefficient	Û
EJ (Engineering Ju							manning s n								1
FI (From Field Inst		5.8	CIRC	900	900	N	0.013	0.013	108.080	Normal	1.08	107.750	Normal	1.03	
GIS (From GIS Imm		10.5	CIRC	1200	1200	N	0.013	0.013	99.630	Normal	2.43	99.240	Normal	1.33	
dis (From dis imp		145.5	CIRC	1050	1050	N	0.013	0.013	107.750	Normal	1.03	102.960	Normal	2.17	
GLBL (Global Inter		44.0	CIRC	600	600	N	0.013	0.013	186 840	Normal	5.73	183 330	Normal	6.59	
GPS (From GPS Su		14.2	CIRC	600	600	N	0.013	0.013	179.650	Normal	2.93	178,760	Normal	3.51	
HRAS (HEC-RAS N		8.9	CIRC	600	600	N	0.013	0.013	189.370	Normal	1.00	188.240	Normal	5.31	
IF (Informal)		20.8	CIRC	600	600	N	0.013	0.013	183.330	Normal	6.59	181.770	Normal	5.49	
IF (Interred)		22.3	CIRC	600	600	N	0.013	0.013	188.240	Normal	5.31	186.840	Normal	5.73	
LIDR (Ground Leve		29.5	CIRC	600	600	N	0.013	0.013	181.770	Normal	5.49	179.650	Normal	2.93	
MCH (Model Con		48.6	CIRC	1125	1125	N	0.013	0.013	163.251	Normal	1.16	161.145	Normal	1.80	
MCL (Model Conf		20.4	CIRC	1125	1125	N	0.013	0.013	164.135	Normal	1.03	163.251	Normal	1.16	
NICE (MODEL CON		121.1	CIRC	1125	1125	N	0.013	0.013	168.415	Normal	1.06	164.135	Normal	1.03	
MCM (Model Cor		130.8	CIRC	1125	1125	N	0.013	0.013	173.005	Normal	1.27	168.415	Normal	1.06	
MI (Manhole Insp		90.7	CIRC	1125	1125	N	0.013	0.013	175.615	Normal	1.00	173.005	Normal	1.27	
MIKE (MIKE Mode		32.4	CIRC	1050	1050	N	0.013	0.013	157.730	Normal	1.33	156.760	NONE	1.00	
MC (Mandallina Ca		33.5	CIRC	1050	1050	N	0.013	0.013	109.300	Normal	2.35	157.730	Normal	1.33	
ivis (iviodelling sp		27.3	CIRC	1123	120	N	0.013	0.013	123 100	Normal	1.00	122.610	Normal	1.17	
PROP (Proposed)		95.6	CIRC	1200	1200	N	0.013	0.013	122 610	Normal	1.17	120 810	Normal	1.02	
RORB (RORB Mod		27.5	CIRC	1200	1200	N	0.013	0.013	120.810	Normal	1.02	120.720	Normal	6.16	
RS (Regional Stand		117.3	CIRC	1200	1200	N	0.013	0.013	126.910	Normal	1.05	126.380	Normal	1.04	
cupy (c		26.6	CIRC	1200	1200	N	0.013	0.013	126.000	Normal	3.81	125.160	Normal	3.12	
SURV (Surveyed)		41.3	CIRC	1200	1200	N	0.013	0.013	124.110	Normal	1.04	123.100	Normal	1.13	
TFLW (TUFLOW N		15.4	CIRC	975	975	N	0.013	0.013	127.205	Normal	1.61	127.135	Normal	1.05	~
XX (Assumed or S	<u> </u>	> Conduit St	hape Headloss curve Flap valv	e Pump Irregular v	<									>	

Model Build – Open Drains/Channels

• 'Channel' requires a Shape, US and DS IL to derive associated conveyance and capacity

Cancel

• GIS Database only contains, 'SHAPE', 'BASE_WIDTH' and 'CHANNEL_WIDTH' – insufficient to derive a profile

- Minor Low Flow Channel derived from drawings
- How far to extent the cross-section profile ?

Model Build – Natural Waterways

Model Build – Natural Waterways

• Example where two 'river reach' alignments with 'bank line' allowing overland connections

Model Build – Natural Waterways

Simply representation in more complex waterways

Model Build – Underground pipes/pumps

Weight kg	CP	CF	CS		
нт	34	34	34		

CP/CF/CS

252 252

W254 254 50

50

2695 2695

2695

23 1.7

3.1 2.4 2695

CPICF/CS

CPICE/CS

CP/CF/CS

CPICE/CS

• MW pits/pipes GIS and some Council assets included

• 13 MW operated pump stations in City of Kingston and Frankston municipality

- Pump curves derived from pump manufacturer
- Extracted pump operating levels to set controls of each pumps

Model Build – Flood Storages

Includes retarding basins and any other storages holding flood retardation properties.
 No Council retarding basin GIS dataset

Represented using stage-storage relationship derived from RORB, drawings or LiDAR.
 Highlighted issues in data and asset management

Model Simulation & Verification

• Spatial variability using 17 existing MW rainfall stations

Rainfall timeseries for the 5 year
ARI (20% AEP) design storms (1; 2;
6; 9; 12; 24; 48 and 72 hour)

Flow checks against MW flood study

• Checks completed for all open drains under capacity to ascertain

the cause

Scenario Modelling

- Existing Conditions Scenario
- Future Conditions Scenarios
 - Scenario 1: Increase in population
 - 6 million (2031)
 - 7 million (2041)
 - 8 million (2051)
 - 10 million (extrapolation from 2051)
 - Scenario 2: Climate Change (0.8m SLR increase + 10% increase rainfall intensity)
 - Scenario 3: Densification of development 8 million (2051)

System Performance Assessment

 pipe surcharge state and node (manhole) flood depth

 maximum calculated flow against the pipe at full capacity

Practical Aspects and Learnings

 Challenging representation of waterways in 1D

Interpretation of the Ground Model
 problematic

• Future conditions scenario modelling cannot be relied on for Greenfield areas

- Quick run time
- Coupling with sewer network model for sewer dilution assessment

Acknowledgements:

Andy Chan (Intelligent Water Network Engineer - Water Services Planning, MW) Nigel Pugh (Senior Engineer – Water Services Planning, MW) Warwick Bishop (Regional Director, Water Technology) Erin Jacobi, Belinda Tam and Bahman Esfandiar (Project Engineers, Water Technology)

Thank you Any questions?

Celine Marchenay Senior Engineer (Water Technology) celine.marchenay@watertech.com.au

