Large Scale Stormwater Harvesting

Alex Walton Senior Project Manager

Sarah Watkins
Senior Planning Engineer
Melbourne Water

Nigel Corby

Manager Strategy and Partnerships

Western Water

Large Scale Stormwater Harvesting

Alex Walton Senior Project Manager

Business Case: Challenges

Technical

- Volumes, storage, transfer, land
- Environmental value
- Quality for end use

Economics & Funding

- Economic benefit v Business Value
- Costs > BAU
- Key assumptions

What will help?

- High value uses
- Land for storage within urban landscape
- Waterway strategy and scientific modelling
- Community support (mandate), willingness to pay.
- Offset schemes for stormwater management
- Co-funding (demonstrating local or broader value)

Large Scale Stormwater Harvesting

Sarah Watkins
Senior Planning Engineer
Melbourne Water

Stormwater harvesting (typical)

How do we model a network of stormwater harvesting systems?

Modelling approach

- MUSIC model of drainage schemes (wetlands) to generate catchment runoff and wetland fluxes
- 2. Import MUSIC outputs (csv) to InfoWorks model
- 3. Model many (30) pumps operating simultaneously to size balance storages, pumps, pipes
- 4. Model wetlands in InfoWorks, and re-run your model to optimise network
- 5. Source catchment model to understand creek flow regime

- 6 minute timestep (any time series)
- Model at 6 second timestep (max 1 year time series)
- To do multiple years, need to run in series with boundary condition

27 year time series

Modelling approach

Technical challenges and lessons

- 1. Use the right tool for the job
- 2. Get your data talking
 - Rainfall data
 - Timestep, time series length, climate change
- 3. Iterate, iterate, iterate

Learnings

Modelling a large scale, networked harvesting scheme that achieves high yield is possible, but requires careful consideration

Make assumptions

...and then strategically test them

• Take your time, do it well

Nigel Corby Manager Strategy and Partnerships Western Water

Collaboration & Community/Stakeholders

Collaboration

- No single organisation is responsible for all aspects of the urban water cycle
- Collaborative effort between
 - Western Water (Water Supply and Sewage Management)
 - Melbourne water (Waterway Manager and Drainage)
 - Hume City Council (Drainage, Open Space, Streetscapes)
 - DELWP (Policy, IWM Forums)
- Collaborative effort involves a commitment to buy into the values of other organisations and aim for a best community outcome solution

Community and Stakeholder Input

- Initially a technical feasibility exercise, now a community engagement exercise
- Community Engagement
 - Online Survey to explore values
 - Local Community Group Presentations (10+ Sessions)
 - Deliberative Panel (35 Participants, 5 x Full day sessions)

Challenges and Learnings

Challenges

- Growth is happening, and fast (WW is growing ~5%/yr)
- Collaboration is not easy, it takes time
- Science is evolving, the is a lag time before Policy catches up
- Staying open-minded

Learnings to Date

- Water cycle values are place based, however it is not just the local community who benefits from protecting these values
- There are technical solutions that can achieve multiple benefits
- Don't focus on the costs, focus on the outcomes, we can work on the funding later
- The community may be more forward thinking than we give them credit for

Thank you